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1 Introduction

The University of Illinois’ Graduate School of Library and Information Science (uiucGSLIS)
participated in TREC’s microblog and knowledge base acceleration (KBA) tracks in 2012.
Our high-level goals were two-fold:

• Microblog : Test a novel method for document ranking during real-time search.

• KBA: Compare methods of topic representation–particularly longitudinal adaptation
of topic representation–for the KBA task.

Our document ranking in the microblog track is based on a behavioral metaphor. Given
a query Q, we decompose Q into a set of imaginary saved searches S. Given an incoming
document stream D = D1, D2, . . . , DN , we ask: what is the probability that a document D
is read, given the user’s query and a rational allocation of attention over his saved searches?

Our KBA runs relied on the track’s inherent temporality to induce and maintain expres-
sive entity profiles during the Cumulative Citation Recommendation (CCR) task. Time
influenced our approach in two ways. First, an initial entity model was built by analyzing
that entity’s Wikipedia edit history prior to the corpus start date. Each feature’s initial
probability was a function of its persistence over the edit history. Second, as our system
iterated over the stream’s nine-month window, an entity’s model adapted in light of re-
cently seen documents. Entities were represented as weighted feature sets using the Indri
query language. Our main result hinged on the method for model adaptation over time.
In adapting for temporal change, we used a monthly “memoryless” updating procedure,
balancing a conservative approach to updating with more aggressive adaptation. Thus, at
the end of each month of filtering, an entity’s features were updated based on the month’s
stream. This update mixed the previous month’s model with the current model; but all
previous months were ignored. No new features were added; rather, we only re-estimated
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each feature’s probability within the model. This approach allowed a helpful degree of
adaptability, while hedging against model drift. Of particular interest was the effect of
model updating mechanisms. We used two very different approaches to adaptation. On
the supplied training data, a Markov model-based technique strongly outperformed a sim-
ple linear interpolation. However, initial results suggest that in the long run, the formalism
behind updating was less important than the more basic matter of assuring adequate flex-
ibility by some means while retaining the model’s pertinence to the entity it described.

Our system used the Indri search engine and API1 for core indexing and data manip-
ulation. Our retrieval models varied from task to task, as described below. Very little
pre-processing was used in our experiments. We did not stem documents. We did no
stopping at index time, though stoplists (described below) were used during construction
of some baseline pseudo-relevance feedback models.

2 Microblog Track

We submitted runs for only one of the microblog track’s two tasks: real-time ad hoc
retrieval. This task required teams to retrieve documents posted to the Twitter microblog
service2 in response to a query issued at a particular time. Track organizers created 50 test
topics and accumulated relevance judgments in a fashion similar to the standard TREC
pooling method. Details of this process are available in the track overview paper.

We downloaded a version of the tweets2011 corpus on May 25-26, 2012 using the HTML
scraping tools provided by the track organizers. This crawl yielded 11,908,900 indexable
tweets with an HTTP status code of 200. These comprised our experimental corpus.

Our main goal was to capitalize on the essentially temporal character of people’s inter-
actions with Twitter. With this in mind, we formulated a retrieval model appropriate for
inherently temporal information.

2.1 A Saved-Query Model for Real-Time Search

Our tweet ranking model is based on a behavioral metaphor. Assuming that a person has
an information need I articulated by the query Q = (q1, . . . , qn(Q)), we imagine Q as a set
of saved searches S = (s1, s2, . . . , s|S|), where |S| is the number of unique terms in Q. This
fictional user then monitors incoming documents by checking tweets retrieved by his saved
searches. However, a user only has a finite amount of attention to allocate to monitoring
his saved search results. Thus, we score a document D on the probability that a user would
read D given a rational allocation of attention over his |S| saved searches. We denote this

1http://lemurproject.org
2http://twitter.com

2



as P (D|S): the probability that D is read given a set of saved searches S:

P (D|S) =
∑
s∈S

P (D|s)P (s|S). (1)

It is important to stress that the random variable D has a binary outcome: a document is
either read or it is not. This is in opposition to any sort of generative model.

Microblog documents are scored according to Eq. 1 in our runs.
We can read the summation in Eq. 1 as being over “the probability that D is read given

that we are scanning the results of saved search s times the probability that we choose to
scan the results of s” for each s ∈ S.

To estimate P (s|S) we assume that the searcher allocates his attention to each saved
search s according to P (s|Q), under the intuition that the query model expresses the
searcher’s topical priorities. Initially, then, we simply have the maximum likelihood esti-
mate:

P̂0(s|S) =
n(s,Q)
n(Q)

(2)

If we have a set of (pseudo-) relevant documents R = (DR1, DR2, . . . , DRk) we have:

P̂R(s|S) =
n(s,R)
n(R)

(3)

where n(R) is the number of tokens in all k feedback documents, and n(s,R) is the fre-
quency of s in all documents comprising R. Given a mixing parameter α ∈ [0, 1], we have
the feedback distribution:

P̂F (s|S) = αP̂0(s|S) + (1− α)P̂R(s|S). (4)

Throughout the following discussion we set k = 20 and α = 0.5. We also restrict the
number of terms added to the collection of saved searches via feedback to the the 20 terms
with highest P̂R(s|S).

The more difficult task lies in estimating the user’s probability of reading a particular
document retrieved by the saved search s. The key to our approach here lies in the problem
of information overload.

Creating a saved search for a very common word such as the will of course lead to high
recall–many relevant documents contain this term. But over time, the results of this search
would be unmanageable. We assume that users have finite time to allocate to reading the
results of their searches. If a search accumulates many documents, it carries a risk that the
user will fail to read a relevant document due to the scarcity of attention. As the frequency
of s in the document stream increases, the probability of reading a given document in its
collected results decreases. Intuitively, P (D|s) monotonically decreases with the frequency
of s.
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To capture this intuition, we imagine the following. At time t the user reviews the
results obtained by the saved search s. This consists of ns documents. While one could
conceivably make various assumptions about the ordering of these ns documents for pre-
sentation to the user, we assume no particular order (i.e. a simple set-based retrieval is at
work). Below we discuss the implications of this choice. The user begins to read these ns
documents. After each one, he chooses either to continue onto the next document or to
quit. In the interest of simplicity, we assume that λ, the probability of quitting, is constant.
This leads to an exponential distribution with rate parameter λ. The probability of reading
at least m documents is thus e−λm.

Let us consider a particular document D among all ns retrieved documents. We wish
to know the probability that the user will read D (the event D). If D is first in the user’s
“in-box” we have P (D) = e−λ1. If λ is small, this is a very likely event. But if D is buried
deep among the ns documents, requiring the user to read, say, 1000 documents before he
finds it, the probability of reading d is very small.

Let E(rD) be the expected rank of document D in the results accumulated for s at
time t. The probability of D being read given a result set of ns documents is:

P (D|s) = e−λ·E(rD). (5)

If we imagine that the order of documents in the results for s follows no particular ordering
(i.e. we imagine a simple set-based search), then E(rD) = 1

2sn. This amounts to having no
influence of term frequency in our document scoring. However, we could easily introduce a
local term frequency factor into the ranking by assuming that E(rD) follows some function
that is increasing on the frequency of s in D. Alternatively, we might imagine a temporal
ordering, with newer documents promoted via and expectation using a distribution favoring
recently published information. However, we leave that for future work.

In this work, we assumed a uniform distribution for document ranks in
saved search results, which means that we relied only on binary features. As
in the binary independence model, we effectively treated each query term’s
occurrence in a document as a Bernoulli trial.

The choice of λ in Eq. 5 governs the importance of an IDF-like factor in document
ranking. Setting λ = 0 leads document frequency to play no role in the utility of a word.
On the other hand, large values of λ lead to a very strong penalty for common words.

In our work, based on ad hoc tuning using training queries, we set λ = 0.001
in our experiments.

In many ways, the “attention model” given in Eq. 1 is analogous to simple TF-IDF
ranking. Its first factor is a TF weight, the second factor expresses the frequency of each
term in the query (or feedback documents), and the final term is similar to IDF. However,
our model offers several points of flexibility:

1. Tunable IDF influence via selection of λ.
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2. Arbitrary functional form for IDF influence (e.g. Weibull distribution for quit prob-
ability instead of simple exponential).

3. Ability to account for arbitrary document features (query-dependent or independent)
by the expectation in Eq. 5.

2.2 Submitted Runs

We submitted four runs, all based on the model described in the previous section, with
varying levels of additional sophistication. Except for uiucGSLIS01, none of our runs relied
on external or future evidence. In uiucGSLIS01, we used external evidence in the form of
the vocabulary from the TREC AP 88-89 corpus to assess the degree to which a tweet’s
language conformed to conventional English. In almost every sense, like our other runs,
uiucGSLIS01 ignored future evidence. However, the weights in the learned model were
trained on the topics from the 2011 microblog track. Some of these topics have query
times posted after query times for the 2012 topics, so in a strict sense we were learning
from future data in this case.

2.2.1 uiucGSLIS04

This run used the retrieval model described in Section 2.1. It used no feedback and was
intended to serve as a simple baseline.

2.2.2 uiucGSLIS02

This run used the retrieval model described in Section 2.1. We used pseudo-relevance
feedback (20 documents, 20 terms, with the feedback model interpolated with the original
query via a mixing parameter of 0.5). An important point is that our relevance feedback
method used no stoplist (unlike the relevance model described below).

2.2.3 uiucGSLIS03

This run used the retrieval model described in Section 2.1. We used pseudo-relevance
feedback (20 documents, 20 terms, with the feedback model interpolated with the original
query via a mixing parameter of 0.5).

Additionally, each document’s score in this run was multiplied by an exponential factor
calculated in the method described in [1].

2.2.4 uiucGSLIS01

This run was intended to show our most competitive effort. The ranking model described
above was put into a larger learning to rank framework. The features used in our ranking
were largely due to observations from successes of last year’s microblog participants.
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Table 1: Feature weights in ranking model for uiucGSLIS1 run.

Feature Weight
Textual similarity (with pseudo-relevance feedback) 1.0
log length (in characters) 0.075
Has link (boolean) 0.399
Percent of vocab in TREC AP corpus 0.676
Recency score 1.675
Has hashtag (boolean) -0.025
Has mention (boolean) -0.55
Percent of vocab in handmade list of “spam” words -0.675

The weights shown in Table 1 we learned by a simple coordinate ascent, using the 2011
microblog topics for training, with MAP as the objective function. The main surprise in
these weights in the influence given to document recency. The recency score was a simple
exponential decay function of the age of the document with respect to the query; the
rate parameter on the exponential was λ = 0.01, with time measured in days. Previous
research has shown that many of the 2011 topics were in essence “recency queries,” with
a preponderance of relevant documents posted near query time. This led to the strong
temporal influence seen here. We found, however, that the 2012 topics were much less
sensitive to time.

2.3 Microblog Ad Hoc Empirical Results

Table 2: Initial Report of Microblog Ad Hoc Experimental Results.

Run MAP Rprec P30
median 0.1487 0.1869 0.1808
uiucGSLIS01 0.1829 0.2080 0.2186
uiucGSLIS02 0.1751 0.2020 0.1972
uiucGSLIS03 0.1717 0.1959 0.1983
uiucGSLIS04 0.1259 0.1482 0.1599
QL 0.1333 0.1602 0.1627
Rel Model 0.1558 0.1912 0.1684

The row in Table 2 labeled median shows the median effectiveness scores aggregated
over all official runs. The rows labeled QL and Rel Model were not submitted, but are shown
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as a baseline. The QL row gives results using the standard query likelihood model; this is
intended as a point of comparison with uiucGSLIS04. The row labeled Rel Model shows
results obtained from applying feedback via relevance models with feedback configurations
as in uiucGSLIS02, with a strong stoplist applied.

Not surprisingly, uiucGSLIS01–a many-featured model–performed well. However, its
advantage over uiucGSLIS02 and 03 is actually slim. In comparison to uiucGSLIS04 we
can see that the lion’s share of effectiveness in these runs is due to the influence of relevance
feedback. Except for uiucGSLIS04, all of our runs outperform the population median.

Comparing uiucGSLIS with QL shows that the attention model ranking method is
performing near the quality of a well-tested language modeling approach. More intensive
parameterization of the attention model may well fill this gap, especially insofar as the
difference in effectiveness between these runs is not statistically significant. Additionally,
relaxing our reliance on binary feature representation may help improve the settings of
uiucGSLIS04.

We were gratified by the comparison of uiucGSLIS02 and the Rel Model run. This
comparison showed feedback in the attention model outperforming the more established
feedback method. Additionally, while obtaining strong scores with relevance models re-
quired the use of an aggressive stoplist, feedback in our approach does not use a stoplist.

3 TREC 2012 KBA Track

The Cumulative Citation Recommendation (CCR) task in this year’s knowledge base ac-
celeration (KBA) track challenged teams with the following scenario: given a Wikipedia
entity E represented by a Wikipedia node E, monitor an incoming document stream, sig-
naling to the editors of E when an “edit-worthy” document is seen. Track organizers
identified 29 target entities. Teams monitored a stream of timestamped documents–mostly
news articles and blog posts–spanning approximately a nine-month window.

3.1 Data

We used only the “cleansed” subset of the KBA document stream. The cleansed subset
was generated by track organizers by limiting documents to those with a “reasonable”
chance of being in English. We chose to work with the cleansed data for two reasons: 1)
Its relatively small volume reduced engineering challenges, and 2) all relevance judgments
were limited to documents in the cleansed subset. Track organizers also made named entity
(NER) data for each document available to participants. However, NER information was
not central to our interests so we did not use this information.

Relevance assessments over the 29 target entities took on one of four integer values
corresponding to four categories. We itemize them in Table 3. The rightmost column of
Table 3 stems from our interpretation of what constituted relevance. We limited relevant
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judgments to central documents. In our discussion below, we also report results using
NDCG, which used the raw assessment scores.

Table 3: TREC KBA Document-Entity Annotations with Associated Relevance Interpre-
tations.

Score Label Our interpretation
-1 garbage Not relevant
0 neutral Not relevant
1 relevant Not relevant in our evaluations
2 central Relevant in our evaluations

3.2 Motivation and Approach

Because this was the first year that KBA ran at TREC, the best way to consider the
task was an open question. For instance, participants could think of the system as a
binary classification problem. Alternatively, we could approach it as a document ranking
problem. We chose the latter approach, aiming to score each document with a real-valued
number instead of a binary +/− decision. This outcome, we reasoned, would allow a
Wikipedia editor to browse documents in decreasing order of predicted relevance, while
also admitting a simple thresholding if she wished to see only those documents judged
to be either “relevant,” “central” or both. Lastly, all system parameters were set by
experimentation on the supplied training data. No rigorous optimization was done.

The main focus of our work was entity representation. We explored the ability of the
tasks’ inherent temporality to give information that would allow the profile for E to evolve
over time. We also experimented with the value of the edit history of the Wikipedia page
for E in learning a topic representation.

Each entity Ei was represented by an indri query Qi. At the outset of a run, we began
with the initial query Q0

i . At any time t in the iteration over the document stream, we
have the current query Qti. We will return to our methods for estimating Q0

i and Qti, but
first there are a few details to note.

Taking a very conservative approach, we only returned documents that contained an
exact match on the canonical entity name (i.e. the name represented in the Wikipedia
URL) for E or a very close match. For instance, the query for entity Aharon Barak
contained the filtering statement #scoreif(#1(Aharon Barak)). However, this stric-
ture ignored disambiguation information. So, the entities Basic Element (company) and
Basic Element (music group) both filtered on #scoreif(#1(Basic Element)). Simi-
larly, the URL Frederick M. Lawrence contained the filter #scoreif(#syn(#1(Frederick
Lawrence) #1(Frederick M Lawrence))).
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Our queries also combined several types of information. First, documents were pro-
moted based on the log of their inbound link count plus 1. This factor was implemented
as a document prior (the log-counts were divided by the sum of all log-counts) to achieve
a prior distribution over documents. Second, the indri query described below were applied
to both the text of documents and their resolved URLs. The weight of evidence in URL
text was 2.0 versus 1.0 in the document text. Lastly, in each indri query, the learned model
was weighted 0.35 while the name of the entity was weighted 0.65.

3.2.1 Initial Query Model Estimation

For an entity E we created an initial query Q0 by analyzing the edit history of E . We
represent this history by the sequence of documents H = E1, E2, . . . , Ek where Ek is the
last version of E ’s Wikipedia entry before the start of the KBA document stream. Iterating
over this history we extracted a set of features and weights used to represent E .

Extracted features were any wikiText that appeared as a link using the [[.]]
notation. These features were treated as quoted phrases.

For each feature fi we estimated P (fi|H). To estimate these probabilities we simply
calculated:

P (fi|H) =
1
k

∑
E∈H

P̂ml(fi|E). (6)

As a point of comparison, we built a set of queries whose weights ignored edit history
in favor a estimating probabilities only from the most recent version Ek. However, this
condition did not inform any of our official runs.

3.2.2 Query Model Adaptation

A key factor in KBA is the change that information about an entity E can undergo over
time. We reasoned that over a nine-month window, the initial query model Q0 would
become “stale.” To remedy this, we desired some sort of adaptation over our models.
However, we did not assume any explicit feedback. Likewise, we speculated that it would
be risky to let incoming documents influence the model too much, in which case the risk
of topic drift would become large.

Our query model adaptation utilized a month-by-month, memoryless updating pro-
cedure. That is, at the beginning to the KBA process we used Q0 to score incoming
documents. After one month, the system gathered the highest scoring n = 20 documents
from the initial month, updated the model based on these results (as described below)
and then processed the next month’s documents. After each month, the most recently
accumulated documents were used to update the model.

To avoid query drift, we took a conservative approach and allowed models
to change only in a re-weighting of the originally observed features. i.e. No
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features were added to the model, although as described below, some features’
weights went to zero.

The model was memoryless in the sense that at time t (for t > 0), the parameters of the
model were fully specified by the results from month t− 1 and t. i.e. Months t− 2, t− 3...
exerted no influence. This choice was made in order to allow the model to avoid stagnation.
Thus at time t > 0 we had the model

Qt = φ(Qt−1, Rt) (7)

where Rt is the set of pseudo-relevant documents retrieved during month t − 1 by query
Qt−1. The two runs described below vary only in their specification of the updating function
φ(·, ·).

3.3 Submitted Runs

3.3.1 gslis adaptive

This run generated a query Qt based on the previous month’s query Qt−1 and the pseudo-
relevant documents R via a simple linear combination:

Pa(f |Qt) = αP (f |Qt−1) + (1− α)P̂ml(f |R) (8)

for a mixing parameter α ∈ [0, 1]. We simply set α = 0.5..

3.3.2 gslis mult

This run generated a query Qt based on the previous month’s query Qt−1 and the pseudo-
relevant documents R using a log-linear model:

Pm(f |Qt) = [λ · 1
|Q|

+ P (f |Qt−1)] · [(1− λ · 1
|Q|

) + P̂ml(f |R)] (9)

for a smoothing parameter λ = 0.01.

3.4 KBA Empirical Results

Table 4 summarizes the outcome of our runs in comparison to two participant-wide aggregates–
mean and median F1. Two results are clear from these data:

1. Neither of our updating approaches (gslis adaptive or gslis mult) saw much advantage
over the other.

2. Our approaches, though significantly stronger than the group-wise mean with respect
to F1 operate with effectiveness that is nearly identical to the group-wise median, at
least with respect to F1.
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Figures 1 and 2 show the performance of several models measured at each month in
the KBA corpus. The upper-left panel compares our official runs to a “toy” (i.e. straw
man”) approach. The toy system simply weights occurrences of the exact entity title at
2.0 and individual words from the title at 1.0, using this weighted feature set as a simple
indri query.

A few points of interest emerge from Figures 1 and 2. First, our two methods of
updating models largely track in parallel, but do occasionally (e.g. at month 5) give
different results. Second, our approaches are only slightly superior to the toy system. But
as we can see from the horizontal red line in the figure, the straw man actually performed
near the TREC median. Lastly, performance declines over time. Though this appears
to be a problem with query drift, we might keep in mind that the toy system’s model is
in fact static. Instead of suffering problematic query drift, it seems to be that case that
our performance declines because the KBA problem becomes more difficult (at least with
respect to these metrics) over time. In fact, during conversations with track organizers, it
was suggested that new sources of documents entered the corpus in the later months, and
that these were in some sense noisier than the initially dominant documents. Thus the
performance decline may be an artifact of the data.

Table 4: uiucGSLIS KBA Experimental Results. Statistics are calculated using only “cen-
tral” documents for relevance .

Run F1 SU
TREC median 0.289 0.333
TREC mean 0.220 0.311
gslis adaptive 0.284 0.339
gslis mult 0.284 0.337

Two points are worth elaborating regarding these data. First, our system was designed
explicitly as a ranking system (i.e. a document routing platform). We are thus eager to
compare our performance using other teams’ results using rank-based measures. Secondly,
the success of the “toy” system (c.f. Figure 1) suggests that the community has a good
deal of research to do if we hope to perform KBA successfully.
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Figure 1: F1 Observed on a Month-by-Month Basis. Red line is a the mean F1 of a “straw
man” model.
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Figure 2: Mean Average Precision Observed on a Month-by-Month Basis. Red line is the
mean MAP of a “straw man” model.
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